Finiteness of certain local cohomology modules
author
Abstract:
Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an ideal of $R_{0}$ and $mathfrak{a}=mathfrak{a}_{0}+R_{+}$ such that $mathfrak{b}_{0}+mathfrak{a}_{0}$ is an $mathfrak{m}_{0}$-primary ideal.
similar resources
UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
full textupper bounds for finiteness of generalized local cohomology modules
let $r$ be a commutative noetherian ring with non-zero identity and $fa$ an ideal of $r$. let $m$ be a finite $r$--module of finite projective dimension and $n$ an arbitrary finite $r$--module. we characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(m,n)$ in certain serre subcategories of the category of modules from upper bounds. we define and study the properti...
full textResults on Finiteness of Graded Local Cohomology Modules
Let R = ⊕ n∈N0 Rn be a Noetherian homogeneous ring with local base ring (R0,m0) and irrelevant ideal R+, let M be a finitely generated graded R− module. In this paper we show that if R0 is a local ring of dimension one, then H i R+(H 1 m0R (M)) is Artinian for each i ∈ N0. Let f be the least integer such that H i m0R(M) is not finitely generated graded R−module. In this case, we prove that ΓR+(...
full textARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...
full textOn natural homomorphisms of local cohomology modules
Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$. Let $I$ be an ideal of $R$ with $grade(I,M)=c$. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms $gamma: Tor^{R}_c(k,H^c_I(M))to kotim...
full textMy Resources
Journal title
volume 7 issue 1
pages 11- 21
publication date 2020-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023